
Adopting native assets for cross-platform FFI plugins

Simon Binder

2025-06-25

Adopting native code assets for cross-platform FFI plugins

Simon Binder

2025-06-25

Introduction

Calling native libraries from Flutter

Dart Native libraries

Also compiles to machine code! Compiles to machine code
2 / 28

This should be so easy!

// extern int cool_library_function();
// extern int useful_field;

 int main() {
 int x = cool_library_function();
 useful_field = x * 2;
 }

Expected behavior for Dart too:

• Fast
• Portable
• Simple
• Doesn’t get in the way:

‣ Synchronous
‣ Shared memory

3 / 28

What options do we have?

Platform channels

4 / 28

Platform channels: Not the right tool for the job!

Goal Platform channels

Fast Serialization overhead 🤷

Portable Flutter-only, platform-specific code required ❌

Simple Complex translation layer ❌

Synchronous ❌

Shared memory ❌

Can’t be used in unit/widget tests, limited isolate support, …

5 / 28

dart:ffi

6 / 28

A quick look at dart:ffi

• Obtain native library
• Lookup symbol dynamically
• Convert to Dart
• Call / load / store

dart

import 'dart:ffi';

void main() {
 final lib = DynamicLibrary.open('my_library.dylib');
 final function = lib.lookupFunction<Int Function(), int Function()>(
 'cool_library_function',
);
 final field = lib.lookup<Int>('useful_field');

 var x = function();
 field.value = x * 2;
}

7 / 28

Benefits of dart:ffi

Goal Platform channels dart:ffi

Fast 🤷 Low overhead ✔

Portable ❌ All native platforms ✔

Simple ❌ Not quite ❌

Synchronous ❌ ✔

Shared memory ❌ ✔

8 / 28

Obtaining the libraries

• We can access methods from native libraries
‣ (after we’ve loaded them)

• We can load libraries
‣ (if they’re available)

• We cannot make them available!
• Platform-specific workarounds

‣ Docker: Add Dockerfile steps
‣ CLI tool: Perhaps an install command?
‣ Flutter

9 / 28

The xxx_flutter_libs pattern

powersync
isar
...

objectbox
sqlcipher
...

sqlite3_flutter_libs

10 / 28

The xxx_flutter_libs pattern

They’re a Dart package, but:

• No Dart code
• build scripts (Gradle, SwiftPM, CMake, CocoaPods)
• another package to depend on
• Not available in unit tests

11 / 28

Benefits of dart:ffi?

Goal Platform channels dart:ffi

Fast 🤷 ✔

Portable ❌ Platform-specific concerns ❌

Simple ❌ ❌

Synchronous ❌ ✔

Shared memory ❌ ✔

12 / 28

Native Code assets

“Basically C”

import 'dart:ffi';

@Native<Int Function()>()
external int cool_library_function();

@Native<Int>()
external int useful_field;

void main() {
 var x = cool_library_function();
 useful_field = x * 2;
}

extern int cool_library_function();

extern int useful_field;

int main() {
 int x = cool_library_function();
 useful_field = x * 2;
}

14 / 28

The distribution problem, revised

• Not just a syntax change!
• Compiler knows about all used functions

‣ Preserved during all parts of the compilation process
‣ Enables optimizations down the road:

– static linking
– native tree-shaking

• We didn’t have to load any libaries!
• So: How is the library made available?

15 / 28

Build hooks

Build hooks

hook/build.dart:

import 'package:hooks/hooks.dart';

void main(List<String> args) async {
 await build(args, (input, output) async {
 // TODO: generate and declare used libraries
 });
}

16 / 28

Build hook system

17 / 28

What’s in a code asset

• Cached in .dart_tool
• Attached asset id

‣ Pointing to Dart file with @Native definitions
• All kinds of things (library, executable, …)
• Linking instructions

‣ Tools responsible for platform-specific loading schemes!
• Created during build

18 / 28

Build hooks

dart

1
2
3
4
5
6
7
8
9
10
11
12

await build(args, (input, output) async {
 final config = input.config.code;

 output.assets.code.add(
 CodeAsset(
 package: 'my_library',
 name: 'foo.dart',
 linkMode: DynamicLoadingBundled(),
 file: pathToMyPrebuiltLibraryFile(config),
),
);
});

19 / 28

Hooks: Inspirations

Code hooks can:
• compile C sources from assets
• download prebuilt libraries
• download and compile C sources
• use libraries from the operating system
• let the user decide!

20 / 28

User flexibility

name: my_app
environment:
 sdk: ^3.6.0
dependencies:
 my_library:

hooks:
 my_library:
 native_version: 1.2.0

void main(List<String> args) {
 build(args, (input, output) async {
 final version = input.userDefines['native_version'];
 // ...
 });
}

21 / 28

dart:ffi with native assets

Goal Platform channels dart:ffi Native assets

Fast 🤷 ✔ ✔

Portable ❌ ❌ ✔

Simple ❌ ❌ YES! ✔

Synchronous ❌ ✔ ✔

Shared memory ❌ ✔ ✔

22 / 28

Compatibility

Experimental feature

Outside of main channel:

> dart run example/main.dart
Package(s) [sqlite3] require the native assets feature to be enabled.
Enable native assets with `--enable-experiment=native-assets`.

Not great for existing packages!

24 / 28

Adoption in existing packages

During the transition, support both:

1. The flutter_libs pattern.
2. Native assets (as a native_assets

package)

25 / 28

Sharing code

26 / 28

Sharing code: The results

import 'package:sqlite3/sqlite3.dart';
import 'package:sqlite3_native_assets/sqlite3_native_assets.dart';

void main() {
 Database db = sqlite3Native.openInMemory();
 print(db.select('SELECT 1 + 1'));
}

27 / 28

Outlook

• FFI and native assets make integrating native code
amazing.

• Not just code
• Data assets
• Auto-generated
• Of course, all platforms! https://www.simonbinder.eu/

talks/native_assets/

28 / 28

https://www.simonbinder.eu/talks/native_assets/
https://www.simonbinder.eu/talks/native_assets/

	Introduction
	Calling native libraries from Flutter
	This should be so easy!
	Platform channels
	Platform channels: Not the right tool for the job!
	dart:ffi
	A quick look at dart:ffi
	Benefits of dart:ffi
	Obtaining the libraries
	The xxx_flutter_libs pattern
	The xxx_flutter_libs pattern
	Benefits of dart:ffi?

	Native Code assets
	"Basically C"
	The distribution problem, revised
	Build hooks
	Build hook system
	What's in a code asset
	Build hooks
	Hooks: Inspirations
	User flexibility
	dart:ffi with native assets

	Compatibility
	Experimental feature
	Adoption in existing packages
	Sharing code
	Sharing code: The results
	Outlook

